Disclaimer and Legal Notices

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL’S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS’ FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

* Other names and brands may be claimed as the property of others.

Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft Corporation in the United States and/or other countries.

Java is a registered trademark of Oracle and/or its affiliates.

Copyright (C) 2003–2014, Intel Corporation. All rights reserved.
Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804
This Getting Started Guide explains how to use the Intel® MPI Library to compile and run a simple MPI program. This guide also includes basic usage examples and troubleshooting tips.

To quickly start using the Intel® MPI Library, print this short guide and walk through the example provided.

The Intel® MPI Library for Linux* OS Getting Started Guide contains information on the following subjects:

- First steps using the Intel® MPI Library
- First-aid troubleshooting actions

This Getting Started Guide contains the following sections:

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 1 Introduction</td>
<td>Section 1 introduces this document</td>
</tr>
<tr>
<td>Section 2 Using the Intel® MPI Library</td>
<td>Section 2 describes how to use the Intel® MPI Library</td>
</tr>
<tr>
<td>Section 3 Troubleshooting</td>
<td>Section 3 outlines first-aid troubleshooting actions</td>
</tr>
<tr>
<td>Section 4 Next Steps</td>
<td>Section 4 provides links to further resources</td>
</tr>
</tbody>
</table>

1.1. Introducing Intel® MPI Library

The Intel® MPI Library is a multi-fabric message passing library that implements the Message Passing Interface, version 2.2 (MPI-2.2) specification.

1.2. Intended Audience

This Getting Started Guide is intended for first time users of Intel® MPI Library.

Intel® MPI Library Getting Started Guide for Linux* OS

1.3. Notational Conventions

The following conventions are used in this document.

<table>
<thead>
<tr>
<th>This type style</th>
<th>Document or product names</th>
</tr>
</thead>
<tbody>
<tr>
<td>This type style</td>
<td>Hyperlinks</td>
</tr>
</tbody>
</table>

Table 1.3-1 Conventions and Symbols used in this Document
1.4. Related Information

To get more information about the Intel® MPI Library, see the following resources:

Product Web Site

Intel® MPI Library Support

Intel® Cluster Tools Products

Intel® Software Development Products
2. Using Intel® MPI Library

This section describes the basic Intel® MPI Library usage model and demonstrates typical usages of the Intel® MPI Library.

2.1. Usage Model

Using the Intel® MPI Library involves the following steps:

1. (SDK only) Compile and link your application
2. Select network fabric
3. Run your MPI program

Figure 1: Flowchart representing the usage model for working with the Intel® MPI Library.

2.2. Before You Begin

Before using the Intel® MPI Library, ensure that the library, scripts, and utility applications are installed. See the product Intel® MPI Library for Linux* OS Installation Guide for installation instructions.

2.3. Quick Start

1. Source the `mpivars.[c]sh` script to establish the proper environment settings for the Intel® MPI Library. It is located in the `<installdir>/<arch>/bin` directory, where `<installdir>` refers to the Intel MPI Library installation directory (for example, `/opt/intel/impi`) and `<arch>` is one of the following architectures:
 - `ia32` - IA-32 architecture binaries
 - `em64t` - Intel® 64 architecture binaries.
 - `mic` – Intel® Xeon Phi™ Coprocessor architecture
2. Create a hostfile text file that lists the nodes in the cluster using one host name per line.

3. (SDK only) Make sure you have a compiler in your PATH. To find the path to your compiler, run the which command on the desired compiler. For example:

 $ which icc
 /opt/intel/composerxe-2011/bin/em64t/icc

4. (SDK only) Compile a test program using the appropriate compiler driver. For example:

 $ mpiicc -o myprog <installdir>/test/test.c
 $ mpirun -n <# of processes> -f ./hostfile ./myprog

See the rest of this document and the Intel® MPI Library Reference Manual for more details.

2.4. Compiling and Linking

(SDK only)

To compile and link an MPI program with the Intel® MPI Library:

1. Ensure that the underlying compiler and related software appear in your PATH.

 If you are using the Intel® Composer XE packages, ensure that the compiler library directories appear in the LD_LIBRARY_PATH environment variable.
 For example, for Intel® Composer XE 2011, execute the appropriate setup scripts:

 /opt/intel/composerxe-2011/bin/compilervars.[c]sh {ia32|em64t}

2. Compile your MPI program using the appropriate mpi compiler script.
 For example, to compile C code using the GNU* C compiler, use the following command:

 $ mpicc -o myprog <installdir>/test/test.

3. where <installdir> is the full path to the installed package.

 All supported compilers have equivalent commands that use the prefix mpi for the standard compiler command. For example, the Intel MPI Library command for the Intel® Fortran Compiler (ifort) is mpiifort.

2.5. Setting up the Intel® MPI Library Environment

The Intel® MPI Library uses the Hydra process manager. To run programs compiled with the mpiicc (or related) commands, make sure your environment is set up correctly.

1. Set up the environment variables with appropriate values and directories. For example, in the .cshrc or .bashrc files:
• Ensure that the PATH variable includes the <installdir>/<arch>/bin directory. Use the mpivars.[c]sh scripts included with the Intel MPI Library to set up this variable.

• (SDK only) If you are using the Intel® Composer XE packages, ensure that the LD_LIBRARY_PATH variable contains the directories for the compiler library. To set this variable, run the compilervars.[c]sh scripts included with the compiler.

• Set any additional environment variables that your application uses.

2. Make sure that every node can connect to any other node without a password.

3. Create a hostfile text file that lists the nodes in the cluster using one host name per line.

For example:

$ cat
 > hostfile
 node1
 node2
 ...
 <ctrl> -D

2.6. Selecting a Network Fabric

The Intel® MPI Library dynamically selects the most appropriate fabric for communication between MPI processes. To select a specific fabric combination, set the I_MPI_FABRICS environment variable.

I_MPI_FABRICS

Select a particular network fabric to be used for communication.

Syntax

Where

- <fabric> := {shm, dapl, tcp, tmi, ofa}
- <intra-node fabric> := {shm, dapl, tcp, tmi, ofa}
- <inter-nodes fabric> := {shm, tcp, tmi, ofa}

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><fabric></td>
<td>Define a network fabric</td>
</tr>
<tr>
<td>Fabric</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>shm</td>
<td>Shared-memory</td>
</tr>
<tr>
<td>dapl</td>
<td>DAPL-capable network fabrics, such as InfiniBand*, iWarp*, Dolphin*, and XPMEM* (through DAPL*)</td>
</tr>
<tr>
<td>tcp</td>
<td>TCP/IP-capable network fabrics, such as Ethernet and InfiniBand* (through IPoIB*)</td>
</tr>
<tr>
<td>tmi</td>
<td>Network fabrics with tag matching capabilities through the Tag Matching Interface (TMI), such as Qlogic* and Myrinet*</td>
</tr>
<tr>
<td>ofa</td>
<td>Network fabric, such as InfiniBand* (through OpenFabrics* Enterprise Distribution (OFED*) verbs) provided by the Open Fabrics Alliance* (OFA*)</td>
</tr>
</tbody>
</table>

For example, to select the OFED* InfiniBand* device, use the following command:

```
$ mpiexec.hydra -n <# of processes> \
-env I_MPI_FABRICS shm:dapl <executable>
```

For these devices, if <provider> is not specified, the first DAPL* provider in the /etc/dat.conf file is used. The shm fabric is available for both Intel® and non-Intel microprocessors, but it may perform additional optimizations for Intel microprocessors than it performs for non-Intel microprocessors.

NOTE

Ensure the selected fabric is available. For example, use shm only if all the processes can communicate with each other through the availability of the /dev/shm device. Use dapl only when all processes can communicate with each other through a single DAPL provider.

2.7. Running an MPI Program

To launch programs linked with the Intel® MPI Library, use the mpirun command, as follows:

```
$ mpirun -n <# of processes> ./myprog
```

This command invokes the mpiexec.hydra command. Use the mpiexec.hydra options on the mpirun command line.

Use the -n option to set the number of MPI processes. This is the only obligatory option for the mpirun command.

If you are using a network fabric different than the default fabric, use the -genv option to assign a value to the I_MPI_FABRICS variable.

For example, to run an MPI program using the shm fabric, type in the following command:
For a dapl-capable fabric, use the following command:

$ mpirun -genv I_MPI_FABRICS dapl -n <# of processes> ./myprog

To use shared memory for intra-node communication and the DAPL layer for inter-node communication, use the following command:

$ mpirun -genv I_MPI_FABRICS shm:dapl -n <# of processes> ./myprog

or simply

$ mpirun -n <# of processes> ./myprog

To use shared memory for intra-node communication and TMI for inter-node communication, use the following command:

$ mpiexec.hydra -genv I_MPI_FABRICS shm:ti -n <# of processes> ./myprog

To select shared memory for intra-node communication and OFED verbs for inter-node communication, use the following command:

$ mpirun -genv I_MPI_FABRICS shm:ofa -n <# of processes> ./myprog

To utilize the multirail* capabilities, set the I_MPI_OFA_NUM_ADAPTERS or the I_MPI_OFA_NUM_PORTS environment variable.

The exact settings depend on your cluster configuration. For example, if you have two InfiniBand* cards installed on your cluster nodes, use the following command:

$ export I_MPI_OFA_NUM_ADAPTERS=2

$ mpirun -genv I_MPI_FABRICS shm:ofa -n <# of processes> ./myprog

To enable connectionless DAPL User Datagrams (DAPL UD), set the I_MPI_DAPL_UD environment variable.

$ export I_MPI_DAPL_UD=enable

$ mpirun -genv I_MPI_FABRICS shm:dapl -n <# of processes> ./myprog

If you successfully run your application using the Intel MPI Library over any of the fabrics described, you can move your application from one cluster to another and use different fabrics between the nodes without re-linking. If you encounter problems, see Troubleshooting for possible solutions.

Additionally, using For example, to run the application in the PBS environment, follow these steps:

1. Create a PBS launch script that specifies number of nodes requested and sets your Intel MPI Library environment. For example, create a pbs_run.sh file with the following content:

   ```bash
   #PBS -l nodes=2:ppn=1
   #PBS -l walltime=1:30:00
   #PBS -q workq
   #PBS -V
   # Set Intel MPI environment
   ```
mpi_dir=<installdir>/<arch>/bin

cd $PBS_O_WORKDIR

source $mpi_dir/mpivars.sh

Launch application

mpirun -n <# of processes> ./myprog

2. Submit the job using the PBS qsub command:

 $ qsub pbs_run.sh

When using mpirun under a job scheduler, you do not need to determine the number of available nodes. Intel MPI Library automatically detects the available nodes through the Hydra process manager.
3. Troubleshooting

This section explains how to test the Intel® MPI Library installation and how to run a test program.

3.1. Testing the Installation

To ensure that the Intel® MPI Library is installed and functioning correctly, complete the general testing below, in addition to compiling and running a test program.

To test the installation (on each node of your cluster):

1. Verify that `<installdir>/<arch>/bin` is in your `PATH`:

 $ ssh <nodename> which mpirun
 You should see the correct path for each node you test.

 (SDK only) If you use the Intel® Composer XE packages, verify that the appropriate directories are included in the `PATH` and `LD_LIBRARY_PATH` environment variables

 $ mpirun -n <# of processes> env | grep PATH
 You should see the correct directories for these path variables for each node you test. If not, call the appropriate `compilervars.[c]sh` script. For example, for the Intel® Composer XE 2011 use the following source command:

 $./opt/intel/composerxe-2011/bin/compilervars.sh {ia32|em64t}

2. In some unusual circumstances, you need to include the `<installdir>/<arch>/lib` directory in your `LD_LIBRARY_PATH`. To verify your `LD_LIBRARY_PATH` settings, use the command:

 $ mpirun -n <# of processes> env | grep LD_LIBRARY_PATH

3.2. Compiling and Running a Test Program

To compile and run a test program, do the following:

1. (SDK only) Compile one of the test programs included with the product release as follows:

 $ cd <installdir>/test
 $ mpiicc -o myprog test.c

2. If you are using InfiniBand*, Myrinet*, or other RDMA-capable network hardware and software, verify that everything is functioning correctly using the testing facilities of the respective network.

3. Run the test program with all available configurations on your cluster.

 - Test the TCP/IP-capable network fabric using:
 $ mpirun -n 2 -genv I_MPI_DEBUG 2 -genv I_MPI_FABRICS tcp ./myprog
 You should see one line of output for each rank, as well as debug output indicating the TCP/IP-capable network fabric is used.
- Test the shared-memory and DAPL-capable network fabrics using:

 $ mpirun -n 2 -genv I_MPI_DEBUG 2 -genv I_MPI_FABRICS shm:dapl ./myprog

 You should see one line of output for each rank, as well as debug output indicating the shared-memory and DAPL-capable network fabrics are being used.

- Test any other fabric using:

 $ mpirun -n 2 -genv I_MPI_DEBUG 2 -genv I_MPI_FABRICS <fabric> ./myprog

 where <fabric> is a supported fabric. For more information, see Selecting a Network Fabric.

For each of the mpirun commands used, you should see one line of output for each rank, as well as debug output indicating which fabric was used. The fabric(s) should agree with the I_MPI_FABRICS setting.

The <installdir>/test directory in the Intel® MPI Library Development Kit contains other test programs in addition to test.c
4. Next Steps

To get more information about the Intel® MPI Library, explore the following resources:

See the Intel® MPI Library Release Notes for updated information on requirements, technical support, and known limitations.

The Intel® MPI Library Reference Manual for in-depth knowledge of the product features, commands, options, and environment variables.

Visit the Intel® MPI Library for Linux® OS Knowledge Base for additional troubleshooting tips and tricks, compatibility notes, known issues, and technical notes.

For more information see Websites:

Product Web Site

Intel® MPI Library Support

Intel® Cluster Tools Products

Intel® Software Development Products