A Comparison of Type Ia Supernovae with C-O and Hybrid C-O-Ne White Dwarf Progenitors

Donald Willcox,1, Dean Townsley,2, Alan Calder,3 Pavel Denissenkov,4, Falk Herwig
1Department of Physics and Astronomy, Stony Brook University, 2Department of Physics and Astronomy, University of Alabama, 3Department of Physics and Astronomy, University of Victoria, 4The Joint Institute for Nuclear Astrophysics, Notre Dame, IN

Abstract

Motivated by recent results in stellar evolution that predict the existence of hybrid white dwarf (WD) stars with a C-O core inside an O-Ne shell, we simulate thermonuclear (Type Ia) supernovae from these hybrid progenitors. We perform 2-D simulations in the deflagration to detonation transition (DDT) paradigm of Type Ia Supernovae from hybrid C-O-Ne progenitors produced with the MESA stellar evolution code (Denissenkov et al., 2015). We compare the results from these hybrid progenitors to previous results from C-O white dwarfs (Kruuger et al., 2012). We find that despite significant variability within each suite, trends distinguishing the explosions are apparent in their 56Ni yields and the kinetic properties of the ejecta.

Hybrid Type Ia Supernovae Progenitor Profile

[Image of Hybrid Type Ia Supernovae Progenitor Profile]

ZND Detonations for C-O-Ne Fuel

[Image of ZND Detonations for C-O-Ne Fuel]

Initialization of the Deflagration

[Image of Initialization of the Deflagration]

Delayed Core Detonation For Some Hybrid Realizations

[Image of Delayed Core Detonation For Some Hybrid Realizations]

Integral Quantities (e.g. 56Ni Mass) With Shading Showing the Range of Results Given By The Hybrid and CO Suites of Simulations

[Image of Integral Quantities with Shading]

Conclusions

- Type Ia Supernovae from hybrid white dwarf progenitors yield on average 0.1 M$_\odot$ less 56Ni than from C-O progenitors, suggesting they will be correspondingly dimmer. Exceptions may occur, however, given the large spread in possible 56Ni production among our hybrid realizations.
- Hybrid progenitors deposit an average of 21% less kinetic energy in their ejecta than C-O progenitors, indicating slower expansion velocities of the ejecta.
- We attribute lower average 56Ni production from hybrid progenitors to the lower binding energy released when burning 56Ne-enriched fuel compared to pure C-O fuel. Based on the comparable average mass remaining at high ($>2 \times 10^{32}$ g/cm3) density at the DDT time for C-O and hybrid models, we conclude that the degree to which fuel is burned to Fe-group elements is not caused by differences in stellar expansion during the deflagration stage.

References

Acknowledgements

This work was supported in part by the Department of Energy under grant DE-FG02-87ER40317. The software used in this work was in part developed by the DOE-supported ASC/Alliances Center for Astrophysical Thermonuclear Flashes at the University of Chicago. Results in this paper were obtained using the high-performance computing system at the Institute for Advanced Computational Science at Stony Brook University. F. X. Timmes’s nuclear network code TORCH (http://cococubed.asu.edu/) was used for ZND calculations as modified by D.M. Townsley for computing SN Ia yields (http://astronomy.ua.edu/townsley/code/).